
Revelio: Interpreting and leveraging semantic information in diffusion models

Dahye Kim1,* Xavier Thomas1,* Deepti Ghadiyaram1,2†

1Boston University 2Runway
{dahye, xthomas, dghadiya}@bu.edu

Abstract

We study how rich visual semantic information is repre-
sented within various layers and denoising timesteps of
different diffusion architectures. We uncover monoseman-
tic interpretable features by leveraging k-sparse autoen-
coders (k-SAE). We substantiate our mechanistic interpre-
tations via transfer learning using light-weight classifiers
on off-the-shelf diffusion models’ features. On 4 datasets,
we demonstrate the effectiveness of diffusion features for
representation learning. We provide in-depth analysis of
how different diffusion architectures, pre-training datasets,
and language model conditioning impacts visual represen-
tation granularity, inductive biases, and transfer learning
capabilities. Our work is a critical step towards deepening
interpretability of black-box diffusion models. Code and
visualizations available at: https://github.com/
revelio-diffusion/revelio

1. Introduction
Generating high-quality photo-realistic and creative visual
content using diffusion models is a thriving area of research.
For a generative model to accurately simulate the visual
world around us, its latent space should in principle cap-
ture rich visual semantics and the physical dynamics of the
real world. An direct empirical evidence is in recent efforts
that leverage diffusion features for discriminative tasks such
as detection [10], segmentation [8, 59], classification [28],
semantic correspondence [31], depth estimation [58, 62], or
visual reasoning [57] tasks. Yet, they do not offer clear in-
sights on how this rich semantic information is represented
within the model. Some prior attempts that visualize atten-
tion maps [6] or use PCA [56] on the intermediate features,
though valuable, operate on per-image basis and thus, do
not offer a more holistic in-depth interpretation of diffusion
model’s internal representations.

In this work, we go beyond harnessing the rich repre-
sentations of diffusion models and aim to fundamentally
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Figure 1. k-sparse autoencoders (k-SAE) trained on complex visual
features help identify monosemantic visual properties represented within
black-box diffusion models. We show sample k-SAE neurons and top-4
images that yield highest activations when the k-SAE is trained on inter-
mediate diffusion layer’s features on Oxford-IIIT Pet [38] dataset. Note
how these features encapsulate distinct fine-grained information about dif-
ferent breeds like Keeshond and Samoyed. Best viewed in color.

understand and interpret diffusion models’ internal states.
Concretely, we address the following questions: what fla-
vors of visual information is captured in different layers
and time-steps of a diffusion model? How do they inter-
act with and complement each other and the overall learnt
visual information? Do different layers benefit differently
from external conditioning and why? What inductive bi-
ases are uniquely captured in convolution-based diffusion
models compared to transformer-based ones?

Understanding how a model learns visual information
offers several key benefits. First, current visual generative
models are black box in nature: it is not clear why a be-
nign prompt sometimes produces an unsafe output or why a
very slight tweak to the same prompt generates a very differ-
ent output [4]. Answering the above fundamental questions
will be a crucial step towards interpreting black box gener-
ative models. Second, distilling the granularity of semantic
information represented across different layers, timesteps,
and model architectures can aid in designing more efficient
algorithms that offer semantic and style control.

To reveal the visual knowledge learnt by diffusion mod-
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els, we adopt “mechanistic interpretation” techniques and
learn a sparse dictionary of monosemantic visual con-
cepts. It is physiologically proven that human visual sys-
tem sparsely encodes the most recurring visual patterns
using a small set of basis functions [36]. Motivated by
this, we aim to uncover interpretable features by leverag-
ing k-sparse auto-encoders (k-SAE) [33], which have been
shown to help interpret language models [13, 52]. We
illustrate how the semantic visual information is packed
differently depending on the representation granularity of
the test dataset, across different diffusion layers, denois-
ing timesteps, model architectures, and pre-training data.

Going beyond this, we corroborate our mechanistic in-
terpretation by learning very light-weight classifiers on top
of off-the-shelf diffusion models’ features. Through rig-
orous analysis against multiple baselines and benchmarks,
we show the surprising effectiveness of diffusion features
across a variety of tasks: coarse and fine-grained classifica-
tion and complex visual reasoning. Unlike all prior works,
our classifier, dubbed, Diff-C, bypasses the need to em-
ploy additional losses [28], training a student model [60],
or training a feature map fusing method [31], thereby offer-
ing significant computational benefits (4 orders of magni-
tude inference speedup compared to [28]). We summarize
our empirical and interpretable analysis below, which align
perfectly across datasets, tasks, and model architectures.
• Representation granularity varies non-linearly with

model depth, with different diffusion layers captur-
ing varying levels of visual semantic information, from
coarse-grained shape, texture, or local color patterns to
fine-grained animal breed details, to more global visual
concepts like camera angles and object poses.

• Representation granularity and generalizability
varies with diffusion architectures, pre-training data,
latent or pixel space, cross and self-attention mechanisms
– design choices made to improve the overall pixel
generation quality and training efficiency.

• k-sparse autoencoders help isolate monosemantic vi-
sual properties systematically across model states and
help interpret black box diffusion models.

• Diff-C achieves top-performance over all prior works
that leverage diffusion features for representation learn-
ing, while performing competitively with strong self-
supervised visual (e.g., DINO [37]) and multi-modal
(e.g., CLIP [42]) baselines.

2. Related Work
Diffusion features for discriminative tasks: Diffusion
models have achieved remarkable results in generating
semantically rich high-resolution images [7, 15, 23, 39,
44, 46]. Several recent works leverage diffusion features
beyond image and video synthesis: for zero-shot clas-
sification [12, 28, 60], detection [10], segmentation [8,

59], semantic correspondence [22, 31], rendering novel
views [61], image editing and semantic image manipulation
tasks [27, 56], and so on. Our work is different from prior
works in two important ways. First, we propose a simple
method to adapt diffusion features for discriminative tasks
without the need to distill [60], train an expensive hyper-
network [31], or generate synthetic data [24]. Second, we
go beyond leveraging diffusion features and interpret how
visual information is packed with the model’s architecture.
Interpreting diffusion features: Some recent studies aim
at understanding and interpreting diffusion models. Plug-
and-Play [56] performs PCA analysis on intermediate fea-
tures of Stable Diffusion [44] and find that intermediate fea-
tures reveal localized semantic information shared across
objects, while early layers capture high-frequency details.
However, their analysis is based only on 20 real and gener-
ated humanoid images, limiting the generalizability of their
findings to different domains and model architectures. Au-
thors of [20] explore how diffusion features vary with the
underlying architecture. While valuable, this analysis is
also done on a per-image basis thus not offering a holistic
and an in-depth interpretation of the models’ internal states.
Diffusion Lens [54] analyzes the text encoder of diffusion
models by generating images from its intermediate repre-
sentations. By contrast, our work aims to mechanistically
interpret the opaque visual diffusion features when condi-
tioned on blank prompts using sparse autoencoders.

Recent works have demonstrated that sparse autoen-
coders (SAE) could recover monosemantic features in large
language models (LLMs) [9, 13, 18] and CLIP vision fea-
tures [14, 17]. Concurrent work [50] investigates the pos-
sibility of using SAEs to learn interpretable features from
residual updates within the U-Net to investigate how the
cross-attention layer integrates the input text prompt. By
contrast, our focus is to understand how visual information
is packed within the diffusion models’ internal states and
the interplay between representation abstraction and model
design choices. We reveal valuable monosemantic, human
interpretable visual patterns baked within black box diffu-
sion models.

3. Approach
Our goal is to interpret and expand our understanding
of black box diffusion models. We address this from
two different perspectives: first, we train k-sparse autoen-
coders [33] to recover interpretable monosemantic visual
semantic features across different layers, timesteps, and dif-
fusion architectures. Second, we quantitatively substantiate
each interpretability finding by training light-weight classi-
fiers on the exact same diffusion features.

We begin by providing an overview of diffusion mod-
els (Sec. 3.1), followed by motivation and architecture used
for training k-SAE (Sec. 3.2), followed by the light-weight
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Figure 2. k-SAE visualizations across layers of the U-Net in SD-1.5 and sample images from different neurons yielding highest activations when k-SAEs
are trained on different layers for t = 25 on Oxford-IIIT Pet. We note that across 3 random neurons of k-SAEs, the bottleneck layer captures very
coarse-grained information, where foreground objects positioned similarly are activated by the same neuron. up ft1 captures valuable breed specific
domain information while up ft2 seems to capture high-frequency visual patterns.

classifier, Diff-C (Sec. 3.3).

3.1. Preliminaries on diffusion models

Several powerful open and close-sourced diffusion models
have emerged just in the last two years [1, 2, 19, 39, 41, 43,
44, 46]. Broadly, diffusion models are probabilistic genera-
tive models that aim to learn a data distribution p(x) through
an iterative denoising process. During the forward diffusion
process, the input image x is gradually perturbed with noise
over T timesteps. The reverse process consists of iterative
denoising steps, where each step estimates the added noise
ϵθ(xt, t), parameterized by θ, with t = 1, . . . , T . Each iter-
ation takes a noisy image xt as input and predicts the added
noise ϵ. The objective of the diffusion model is given by:

LDM = Ex,t,ε∼N (0,1)

[
∥ε− εθ(xt, t)∥22

]
(1)

Instead of operating on images x, latent diffusion models
(LDM) [44] operate on a latent representation z, obtained
by mapping the image into a lower-dimensional space us-
ing a variational auto-encoder [25] which consists of an en-
coder E and decoder D. The diffusion process models the
distribution of these latent embeddings, allowing for more
efficient computation. The revised objective is:

LLDM = EE(x),t,ε∼N (0,1)

[
∥ε− εθ(zt, t)∥22

]
(2)

3.2. Preliminaries on k-sparse autoencoders

Our aim is to gain insight into how visual information is en-
capsulated in a diffusion model. Given the very high non-
linearity and complex architectures of generative models,
identifying interpretable components directly from layer ac-
tivations is not viable. In this work, we isolate monose-
mantic features by training k-sparse autoencoders (k-SAEs)

on the activations from different diffusion layers, timesteps,
and architectures, which we describe next.

Sparse auto encoders [34] are neural networks to learn
compact feature representations in an unsupervised manner.
They contain an encoder and a decoder, and are trained with
a sparsity penalty and a sample reconstruction loss to en-
courage only a few neurons to be maximally activated for
a given input. However, the sparsity penalty term in SAEs
presents significant training challenges [33, 53]. A k-sparse
autoencoder is an extension of sparse auto encoder [34] de-
signed to improve the training challenges by explicitly reg-
ulating the number of active neurons during training to k.
Specifically, in each training step, a top-k activation func-
tion is used to retain only the k largest neuron activations,
while zeroing out the rest.

Let x denote the d-dimensional spatially-pooled diffu-
sion activations1. Let Wenc ∈ Rn×d and Wdec ∈ Rd×n

denote the weight matrices of the k-SAE’s encoder and de-
coder respectively (Fig. 1), where n denotes the dimension
of the auto encoder’s hidden layer. n is equal to d multiplied
by a positive integer, called the expansion factor. Follow-
ing [9], bpre ∈ Rd denotes the bias term added to input x
before feeding to the encoder (aka pre-encoder bias), while
benc ∈ Rn denotes the bias term for encoder. Upon passing
x through the encoder, we obtain z defined as:

z = TopK(Wenc(x− bpre) + benc), (3)

where the TopK activation function retains only the top k
neuron activations and sets the rest to zero [33]. The de-

1For notational simplicity, we describe our setup for an arbitrary layer
and denoising timestep, but the same method was followed for activations
from any model state.

3



Layer Output Shape Description
conv1 [B, 1024, H,W ] conv2D, 3 × 3
conv2 [B, 1024, H/2,W/2] conv2D, 3 × 3, stride 2
conv3 [B, 1024, H/4,W/4] conv2D, 3 × 3, stride 2
conv4 [B, 1024, H/8,W/8] conv2D, 3 × 3, stride 2
GAP [B, 1024, 1, 1] global average pooling
FC [B, NUM CLASSES] flatten + FC layer

Table 1. Architecture of Diff-C (40M params)

coder then reconstructs z, given by:

x̂ = Wdecz + bpre (4)

The training loss is the normalized reconstruction mean
squared error (MSE) between the reconstructed feature (x̂)
and the original feature (x), given by:

Lmse = ∥x− x̂∥22 (5)

As we show in results (Sec. 4), k-SAE plays a key role in
qualitatively interpreting visual semantic information.

3.3. Diffusion Classifier (Diff-C)

Next, to quantitatively study the visual semantic informa-
tion packed within pre-trained diffusion models, we design
a lightweight classifier called Diff-C to adapt diffusion fea-
tures to downstream tasks. Diff-C (as shown in Table 1)
comprises a series of convolutional layers to progressively
reduce the spatial dimensions of the diffusion features, fol-
lowed by a pooling and a downstream task-dependent fully-
connected layer. Despite the inherently unique architectural
designs of convolutions-based U-Net [45] and diffusion-
based DiT [39], we adapt the outputs of different U-Net
layers and DiT blocks into 2D feature maps and process
them using Diff-C.

4. Experiments
In this section, we first share the implementation details and
training setup, followed by detailed analyses while dissect-
ing diffusion models.

4.1. Implementation details

Unless otherwise stated, we use Stable Diffusion v1-5
model [44] and DDIM scheduler [49], and an empty prompt
used as the text conditioning.
k-SAE: For training k-SAE, we empirically found that
k = 32 yields the best results for different datasets, based
on training stability and overall sparsity. For Stable
Diffusion-1.5, we spatially pool diffusion activations result-
ing in d = 1280 for bottleneck, up ft0, and up ft1
layers. We set the expansion factor for the k-SAE to 64,
following prior work [17], resulting in n = 1280 × 64 =
81, 920 latents for Stable Diffusion and n = 1152 × 64 =
73, 728 latents for DiT. We apply a unit normalization con-
straint [47] on the decoder weights Wdec of the k-SAE after
each update. We use the Adam [26] optimizer with a learn-
ing rate of 0.0004 and apply a constant warm up for 500

steps. The total training time approximately 1 hour on 1
NVIDIA RTX A6000 GPU trained for 83M steps.
Diff-C has 4 convolutional layers (conv1-conv4) as shown
in Table 1. The final feature dimension is 1024. For all
classification tasks and datasets, we train on a NVIDIA
RTX A6000 GPU, use a batch size of 16, optimize using
AdamW [30], a learning rate of 1× 10−4. We train Diff-C
for 30 epochs with cosine annealing learning rate schedule
and set a minimum learning rate ηmin (5 × 10−5). The in-
put images are randomly cropped and resized to 512× 512.
We augment the dataset with random horizontal flip trans-
formations.

4.2. Setup

Datasets and tasks: We interpret and analyze diffusion
features of on four image datasets and against competitive
baselines on two tasks: (a) classification Transfer learn-
ing onto Oxford-IIIT Pet [38], FGVC-Aircraft [32], and
Caltech-101 [16], (b) visual reasoning As in [55], we in-
terleave two visual features with CLIP – DINO [37] and
diffusion features. We use the LLaVA-Lightning 2 config
and MPT-7B-Chat [51] as the base language model. We use
CC595k [48] for stage 1 pre-training and LLaVA-Instruct-
80K [29] for stage 2 fine-tuning.
Notation: We focus on interpreting bottleneck and the de-
coder layers of the UNet, as the information from the en-
coder is fed into the decoder through the skip connec-
tions. As illustrated in Fig. 2, features extracted from a
given upsampling (decoder) block index are denoted as
up ft{block index}. bottleneck refers to the cen-
tral block which has the smallest spatial resolution in U-Net.
Following the standard convention of reverse denoising of
diffusion models [23, 49], t = 0 corresponds to the timestep
where a final, fully denoised image is achieved and higher
values of t represent noisier images, with t = 1000 de-
noting pure noise. For referring to the features from DiT
we use block index to denote the Transformer block
from which we extract the features. For both U-Net and
DiT, we utilize the Denoising Diffusion Implicit Models
(DDIM) [49] noise scheduler. DDIM allows for determinis-
tic sampling of latents at specific timesteps without the need
to run the full inference pipeline.
Evaluation metrics: For Diff-C, we report top-1 accuracy
for all classification tasks. For the visual reasoning task,
we evaluate on the LLaVA-Bench (in-the-wild) [29] bench-
mark, where model outputs are scored relative to reference
answers generated by text-only GPT-4 [3]. To quantify the
granularity of semantic information captured in diffusion
features, we measure how “pure” the activated k-SAE neu-
rons are. We do this by measuring the average standard de-
viation in the class labels (σlabel) of the top-10 most highly
activating images among the top 1000 most highly activat-

2We use LLaVA-Lightning due to compute constraints.
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Pets up1 / up2

(c) Persian cat (d) Newfoundland dog

(e) Black and white (f) Grass background

bottleneck

up_ft1

up_ft2

(a) Animals on a blanket (b) Side-profile views of dogs

Figure 3. k-SAE visualizations on Oxford-IIIT Pet of bottleneck,
up ft1, and up ft2 U-Net layers at t = 25. bottleneck isolates
very coarse patterns of objects positioned similarly with respect to the
background. For up ft1, clear class-specific features are observed help-
ing us isolate different fine-grained breeds. up ft2 captures more global
texture information such as that of grass.

Figure 4. Top-1 accuracy of different SD-1.5 layer features. Features
from up ft1 consistently yield best performance for SD-1.5.

ing features of the learned k-SAE. We stress that the class
labels are not used for training but only to measure activated
neurons’ purity. the k-SAE. We also visualize images which
result in highest activation for a given k-SAE neuron.

Next, we report our extensive analysis to understand the
visual semantic information packed across diffusion lay-
ers, timesteps, model design and architectures using both
k-sparse autoencoders (k-SAE) and via downstream tasks.

4.3. Information granularity across diffusion layers

In this section, we study how the visual semantic informa-
tion arranges itself across different layers of a pre-trained

Caltech bottleneck/up1

(a) Saling ships (b) Elephants (c) Sketch style (d) Objects with white background

bottleneck up_ft1

Figure 5. k-SAE visualizations on Caltech-101 of bottleneck and
up ft1 UNet layers at t = 25. Unlike for fine-grained dataset (Fig. 3),
bottleneck captures class information, likely due to distinct object
shapes (sailing ships v/s elephants). up ft1 captures more abstract in-
formation such as sketches or objects with white background.

diffusion network. Specifically, how does the diffusion
training objective of minimizing global reconstruction loss
impact the visual information granularity across layers? To
this end, we extract diffusion features from bottleneck,
up ft0, and up ft1, train separate k-SAE and Diff-C
models, and report evaluation metrics listed in Sec. 4.2.
Fine-grained classification task: From Table 2a, we note
that up ft1 yields the lowest σlabel, indicating that the
features corresponding to this layer contain most class-
specific information compared to other layers. This is qual-
itatively corroborated by Fig. 3 where images that k-SAE
neurons get most activated by, have very clear class-specific
characteristics when using up ft1 features compared to
bottleneck and up ft2. This finding is also consistent
with Diff-C results presented in Fig. 4 for Oxford-IIIT Pet
and for another fine-grained dataset: FGVC-Aircraft [32].
Note that there is a sharp decline in performance at up ft2
layer and beyond, suggesting that up ft2 features may be
more aligned with the pre-training task objective of pixel
reconstruction for image generation, thus are less general-
izable for transfer learning. A similar observation was made
about the later layers when mechanistically interpreting lan-
guage models [35].

Does the trend hold for coarse-grained classification
task? To deconflate the effect of task-granularity from dif-
fusion feature granularity, we study the diffusion features
from Caltech-101 dataset. From Table 2a, it is evident that
bottleneck features yields a significantly smaller σlabel.
Also note that the difference between σlabel values between
layers is quite larger for Caltech-101 compared to Oxford-
IIIT Pet. To understand this better, we visualize the highest
activated images from different layers. From Fig. 5, we note
that those from bottleneck are more class-centric and
thus “purer” compared to up ft1, which may be capturing
more style or texture specific information. We hypothesize
that for the task of classifying Caltech-101, coarser shape
information is sufficient which is compactly provided by
bottleneck. This can be clearly seen from Fig. 4, where,
compared to Oxford-IIIT Pet, the performance gap between
up ft1 and bottleneck is significantly low. However,
for challenging tasks where finer-grained information is re-
quired, higher-level layers (up ft1) are more beneficial.
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Layer Oxford-IIIT Pet Caltech-101
bottleneck 9.48 9.35
up ft0 9.90 15.65
up ft1 8.59 21.33
up ft2 9.67 25.61

(a) σlabel for different layers: For Oxford-
IIIT Pet, up ft1 achieves the lowest σlabel,
whereas bottleneck yields lowest σlabel

for Caltech-101, indicating the interplay of
representation and task granularity.

t Oxford-IIIT Pet Caltech-101
(up ft1) (bottleneck)

0 8.99 11.91
25 8.59 9.35
100 8.87 8.72
200 8.94 8.17
300 9.01 10.41
500 9.53 16.65

(b) σlabel for different diffusion timesteps:
For Oxford-IIIT Pet up ft1, t = 25 yields
the lowest σlabel value, whereas for Caltech-
101 bottleneck, t = 200 yields the low-
est σlabel value.

Model Oxford-IIIT Pet
SD-1.5 8.59
SD-2.1 9.67

(c) σlabel for SD-1.5 vs. SD-
2.1: SD-1.5 captures more class-
specific information than SD-2.1.

Block Oxford-IIIT Pet
6 10.18
10 9.44
14 9.05
18 9.55
22 9.84

(d) σlabel for different DiT blocks at
t = 25. Mid-blocks of DiT yield the
lowest σlabel than other layers.

Table 2. Label purity (σlabel) measured by computing the average standard deviation of the top-10 most highly activating images among the top 1000 most
highly activating features of the learned k-SAEs for different diffusion layers, timesteps, models, and architectures on Oxford-IIIT Pet and Caltech-101.

Figure 6. Top-1 accuracy of up ft1 at different timesteps: Earlier
timesteps perform better on fine-grained datasets (Oxford-IIIT Pet, FGVC-
Aircraft); interim ones on coarse-grained dataset (Caltech-101).

4.4. Information packed across diffusion timesteps

We now examine the interplay between diffusion denois-
ing timesteps and visual semantic information granularity.
To this end, we extract diffusion features from up ft1 at
different timesteps t = {25, 100, 200, 300, 400, 500}, train
separate k-SAE and Diff-C models. From Table 2b, we
observe that t = 25 yields the lowest σlabel. This is val-
idated both by top activated images shown in Fig. 3 and
Diff-C performance in Fig. 6. k-SAE neurons are being ac-
tivated by images with very clear class-specific characteris-
tics when using features extracted at t = 25 (more visual-
izations in suppl. material). This finding is also consistent
with Diff-C results presented in Fig. 6 for Oxford-IIIT Pet
and FGVC-Aircraft.

By contrast, from Table 2b, we find that for Caltech-101,
features extracted at t = 200 yield lowest σlabel. This find-
ing is also consistent with Diff-C results from Fig. 4. This
finding is corroborated in [8, 28]. We hypothesize that the
additional noise added at t = 200 could be helping in mak-
ing features more generalizable, but deeper investigation is
needed in the future.

4.5. Effect of different models and architectures

Next, we inspect how diffusion models that differ in their
underlying architectures, pre-training datasets, attention
mechanisms differ how they internally encode visual se-
mantic information.
Stable diffusion variants: We study two stable diffusion

(a) Snow background (d) Grass background

up_ft1

SD21

Figure 7. k-SAE visualizations of up ft1 of SD-2.1 on Oxford-IIIT
Pet at t = 25. Contrary to SD-1.5 (Fig. 3 (c), (d)) where 8 out of 9 images
depict the same breed, SD-2.1 features results in 4 in 9 images in (a) as
Wheaten Terriers and (b) 5 in 9 images are Great Pyrenees in (b).

Figure 8. Stable Diffusion vs DeepFloyd-IF: The performance dip at
up ft0 is not observed for DeepFloyd-IF across both datasets.

models (SD-1.5 v/s SD-2.1) which primarily differ in the
underlying text encoder and pre-trained datasets. We first
extract diffusion features from bottleneck and up ft1
at t = {25, 200} on Oxford-IIIT Pet dataset and train k-
SAE and Diff-C models. From Table 2c, we note that σlabel

is lower for SD-1.5 indicating that SD-1.5 captures more
object-specific information compared to SD-2.1. This is
qualitatively supported by Fig. 3 and Fig. 7 where k-SAE
neurons are being activated by images with clearer object-
specific information when using SD-1.5 features compared
to SD-2.1. This is also consistent with Diff-C results in Ta-
ble 3, where bottleneck features of SD-2.1 are particu-
larly under-performing compared to SD-1.5. Even though
there is a sharp performance boost of 13.17% from using
up ft1 for both architectures (t = 25), SD-1.5 performs
better overall across timesteps. Similar behavior was noted
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Model Params (M) Layer Timestep Test Acc

SD-2.1 900
bottleneck 25 56.80

200 56.15

up ft1 25 84.74
200 81.77

SD-1.5 893
bottleneck 25 69.97

200 68.03

up ft1 25 88.61
200 86.89

DiT 783
block 10 25 87.49

200 80.89

block 14 25 88.61
200 83.02

DeepFloyd-IF I-900M 900
bottleneck 25 61.16

200 54.08

up ft1 25 84.08
200 76.09

Table 3. Top-1 accuracy of different diffusion architectures on Oxford-
IIIT Pet. SD-1.5’s up ft1 and DiT’s block 14 perform best overall.

DiT

Block 6 Block 14 Block 22

(a) Texture (c) Orange cat faces

(d) Light brown animals (e) Havanese

(b) Molosser breeds

(f) Texture and grass

Figure 9. k-SAE visualizations of DiT blocks on Oxford-IIIT Pet. Block
14 captures fine-grained information; others capture less distinct features.

for zero-shot classification in [28] but not well-understood
and is a fruitful topic for future research.
Latent v/s pixel space: We next examine how diffusion
denoising in the pixel space impacts the learnt visual infor-
mation differently from those learnt in the latent space. To
this end, we compare classification performance of stable
diffusion features with those from DeepFloyd-IF [5] which
operates directly in the pixel space3. Unlike SD-1.5, we
note an uptick in the performance of features from up ft0
layer of DeepFloyd-IF by 1.74% for Oxford-IIIT Pet, and
2.85% for Caltech-101 for t=25 as illustrated in Fig. 8. Fur-
thermore, from Table 3, we observe that DeepFloyd-IF’s
performance is more sensitive to timesteps than Stable Dif-
fusion. For instance, SD-1.5 has a dip of 1.97% in top-
1 accuracy when using bottleneck features at t = 25
v/s t = 200, while DeepFloyd-IF has a significant drop

3We acknowledge that despite having similar number of model param-
eters, both models have different pre-training data, cross-attention connec-
tions, and different initial input image resolution.

Figure 10. Visualizing top-3 PCA components of diffusion features
from SD-1.5 and DiT. bottleneck, up ft0, and up ft1 of SD-1.5
capture spatially localized information at varied granularity. This property
is missing from DiT features across different blocks.

of 7.08%. Given DeepFloyd-IF operates directly in the
pixel space, we think that each denoising step is introduc-
ing larger shifts in the underlying semantic structure than in
latent space, contributing to these differences.
Different diffusion architectures: We also study how se-
mantic information representation varies with the choice of
diffusion architecture. To this end, we compare features
from U-Net based diffusion model against transformer-
based model. Specifically, we extract features from dif-
ferent encoder blocks of DiT [39] and interpret them via
both k-SAE and Diff-C. From Table 2d, we observe that the
middle block of DiT (block14) yields the lowest σlabel

compared to earlier and later layers. This is qualitatively
supported by Fig. 9, where the block14 features contain
more class-specific information than other blocks. While
with U-Net based features we saw images with spatially re-
lated photographic styles emerge (e.g., similar postures or
photographic compositions as shown in Fig. 3 (a), (b)), we
did not find similar patterns emerge from earlier or later
layers of DiT. Though the selected DiT and U-Net based
diffusion models have similar number of parameters (Ta-
ble 3), transformer-based DiT may have less spatial induc-
tive biases compared to the convolutional-based U-Net. Ad-
ditional visualizations of DiT features in suppl. material.
Inductive biases in diffusion models: To more deeply un-
derstand the difference between DiT and SD-1.5 in how
spatial information is internally encoded, we follow the ap-
proach from [56] and apply principle component analysis
(PCA) on the diffusion features, and visualize the first three
principal components of images from UnRel [40] dataset.
From Fig. 10, it is evident that bottleneck features
of SD-1.5 captures very coarse spatial information, while
up ft1 captures very clear localized semantic information,
even on images where common objects occur out of con-
text. As we go deeper into SD-1.5, layer up ft2 tends to
capture more low-level information (more visualizations in
suppl. material). By contrast, DiT’s maps exhibit blended
colors across all layers, indicating no clear spatially local-
ized information. This property aligns with transformers’
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LLaVA Vision Encoder Relative Score

CLIP 56.6
CLIP + DINO-v2 47.0
CLIP + SD-1.5 (up ft1 at t = 25) 59.9
CLIP + SD-1.5 (up ft1 at t = 200) 56.8

Table 4. Performance of multi-modal reasoning task: SD-1.5’s up ft1
features when integrated with CLIP into LLaVA lead to significant boosts
on LLaVA-Bench(In-the-Wild), reflecting alignment with the reference an-
swer generated by text-only GPT-4 responses.

Model Num Params (M ) Oxford-IIIT Pet FGVC-Aircraft

Diffusion Classifier (SD-2.0)† [28] 900 87.3 26.04
SD-2.0 features [28] 1420 75.9 35.2
Diff-C (up ft1) - empty 800 88.69 65.07
Diff-C (up ft1) - from CLIP 800 90.97 64.98

CLIP ResNet-50 † [42] 102 85.4 19.3
OpenCLIP (ViT-H/14)† [11] 630 94.39 42.75

Table 5. Top-1 accuracy on Oxford-IIIT Pet and FGVC-Aircraft.
Among models that use diffusion features (top), Diff-C performs best and
competes very well with CLIP (bottom) † : zero-shot

.
tendency to capture more global context by attending to the
entire image, and supports k-SAE’s interpretations in Fig. 9
that there is less spatially-rich information in DiT.

4.6. Performance on visual reasoning

Next, we study the generalizability of diffusion features for
visual reasoning by integrating them into the LLaVA [29]
framework. Specifically, on the LLaVA-Lightning config-
uration [29], we extract features from CLIP [42], DINO-
v2 [37], and up ft1 layer from SD-1.5 and pass them in-
dependently through separate multi-layer projection layers.
We then interleave the projected embeddings as done in [55]
and pass them into the language model in LLaVA [29] (im-
plementation details in suppl. material). We report the
performance from using different visual features but keep-
ing the language model fixed on the LLaVA-Bench (In-
the-Wild) [29] evaluation benchmark and report the relative
scores of the model compared to GPT-4 obtained answers
averaged over these categories. From Table 4, it is clear
that interleaving CLIP with up ft1 diffusion features ex-
tracted at t = 25 improves the relative score by 3.3%. By
contrast, interleaving CLIP with DINO-v2 features led to a
dip in the performance by 9.6%. We believe that diffusion
features, like CLIP, enjoy the benefit of being multi-modal;
however, unlike CLIP, diffusion features also encode strong
local semantic information (Fig. 10) – overall making them
very powerful feature representations.

4.7. State-of-the-art performance

Finally, we compare Diff-C with other models that use dif-
fusion features for representation learning (Table 5 top row)
and also with CLIP variants (Table 5 bottom row). In addi-
tion to passing an empty prompt which is our default set-
ting, we also experiment with providing a CLIP-inferred

prompt during diffusion feature extraction for a fairer com-
parison with [28]. From Table 5, we see that Diff-C per-
forms significantly better than the best reported numbers
in [28]: +3.67% improvement on Oxford-IIIT Pet and
a huge boost of +39.03% for FGVC-Aircraft. “SD-2.0
features” baseline from [28] inputs bottleneck features
into ResNet [21] like architecture consuming 520M model
parameters. On the other hand, Diff-C is a significantly
lighter model (40M model parameters) and yet, achieves a
huge boost of +15.07% for Oxford-IIIT Pet and +29.87%
for FGVC-Aircraft from using up ft1 features. This boost
clearly illustrates the effectiveness of interpreting the dif-
fusion model states and making an informed selection for
achieving the best transfer learning performance on target
tasks. It also highlights the benefit of selecting the right
visual features over using complex, highly parameterized
models. Crucially, the diffusion classifier from [28] takes
≈ 24 sec / sample (using their default settings on Oxford-
IIIT Pet) on a single NVIDIA RTX A6000, while Diff-C
takes only ≈ 0.13 sec / sample, thereby yielding a 4 orders
of magnitude speedup during inference.
Effect of text conditioning: We note that text-conditioning
yields mixed results: it leads to performance improvement
of Diff-C (rows 3 v/s 4 in Table 5) by +2.28% on Oxford-
IIIT Pet, but a slight dip of −0.09% on FGVC-Aircraft
dataset. This detrimental effect of text-conditioning is more
pronounced when comparing Diffusion Classifier with SD-
2.0 features (rows 1 v/s 2 in Table 5), where the former
uses text information, while SD-2.0 features is based purely
on visual features. This behavior is not well understood
and could be because of the low frequency of occurrence of
specific aircraft model names in the natural language cap-
tions used for pre-training or a misalignment between pre-
training and the domain-specific aircrafts image data.

5. Discussion and Future work
In this work, we present k-sparse auto-encoders as an effec-
tive tool to dissect diffusion models of different architec-
tures, across different layers, and inference timesteps. Our
qualitative and quantitative analysis shows that the abstrac-
tion of visual information oscillates from coarse-grained to
fine-grained and then back to coarse-grained as we traverse
along the depth of a diffusion model. Fruitful research di-
rections entail effective ways to leverage the interpreted in-
formation to design better semantic editing algorithms. We
currently manually inspect and label the k-SAE neurons,
however, to avoid potential subjectivity, in the future, we
plan to leverage visual language models [29] to automat-
ically generate interpretations. Finally, we hope that our
work will spark more interest on the worthy topic of diffu-
sion model interpretability in the research community.
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Revelio: Interpreting and leveraging semantic information in diffusion models

Supplementary Material

Text Conditioning in Diffusion Models

Following the findings from [59], we report the perfor-
mance of Diff-C in two text conditioning scenarios: i)
empty prompt and ii) a meaningful prompt, e.g., “a photo
of a {class name}, a type of pet”, with the class name
first inferred through a zero-shot classification with CLIP.
The motivation behind reporting both scores is to provide
a comprehensive understanding of how text conditioning
affects visual features at each layer. We report the clas-
sification performance with and without CLIP-inferred
captions in Tables 6, 7, and 8. We note that passing
specific class information inferred from CLIP generally
helps across all three datasets, layers, and timesteps. To
further understand how specific the captions should be, we
experiment by passing a generic prompt, e.g., “a photo of a
pet” during the diffusion process. As shown in Table 9 for
up ft1 layer, on Oxford-IIIT Pet [38], compared to the
base setting of passing in an empty prompt, using a generic
prompt leads to a performance drop by 3.14%. This indi-
cates that the specificity of the text being used to condition
directly impacts feature representation quality, where more
targeted prompts align better with class-relevant features,
thereby improving model accuracy. Consequently, using
precise text conditioning can lead to considerable gains
in performance, particularly in distinguishing nuanced
categories. However, this may not always be the case as
described in Sec. 4.7, where for FGVC-Aircraft [32] con-
ditioning with the class names led to a dip in classification
performance.

Layer-wise PCA Analysis of Feature Maps

Figures 11 and 12 provides more evidence to the findings
in Sec. 4.5. by highlighting differences in how SD-1.5 and
DiT encode spatial information. In SD-1.5, the feature maps
reveal well-defined spatial structures, with consistent colors
and textures that correspond to specific regions in the im-
age. By contrast, the feature maps of DiT display blended
patterns, suggesting a stronger focus on capturing global
context rather than emphasizing distinct spatial details.

Additional details on the visual reasoning task

Hyper-parameters: We adopt the same hyperparameters
used in the the LLaVA-Lightning [29] configuration across
all experiments. We use MPT-7B-Chat [51] as the language
model, and CLIP ViT-L/14 [42], DINOv2 ViT-L/14 [37],
SD-1.5 as the vision encoders. We show the training hyper-
parameters in Table 11. All experiments were conducted

using a maximum of 4 NVIDIA RTX A6000 GPUs.

Pre-training datasets: Following LLaVA-Lightning [29],
we use CC595k [48] for stage 1 pre-training, to align the vi-
sual encoder with the language model to establish a shared
vision-language representation, by tuning the adapter.
For stage 2 fine-tuning we use LLaVA-Instruct-80K [29]
to fine-tune the model to enhance instruction-following
capabilities.

Adapter settings: For experiments involving CLIP and
DINOv2 features, we use the standard 2 layer MLP
projector to align visual tokens with language tokens [29].
To obtain tokenized representations from the feature maps
obtained from SD-1.5, we first add a 2 layer convolutional
block and transform the feature map into pseudo-tokenized
representations that match the token embedding dimensions
of CLIP and DINOv2. These pseudo-tokenized represen-
tations are then passed into the 2 layer MLP projector for
alignment.

Interleaving diffusion features with CLIP for visual
reasoning tasks: For the experiments reported in Sec. 4.6,
we first gradually reduce the spatial dimension of up ft1
from 1280 × 32 × 32 to 256 × 1024 to match the token
dimensions of CLIP vision embeddings. Next, we pro-
cess these embeddings through two separate multi-layer
projection layers resulting in projected embeddings of
shape 256 × 4096. Finally, we interleave the projected
token embeddings as done in [55] before passing them into
LLaVA [29].

Performance: Table 10 compares the performance of dif-
ferent vision encoders in LLaVA, including CLIP (Ta-
ble 10a), CLIP+DINOv2 (Table 10b), and CLIP+Diffusion
at timesteps t = 25 (Table 10c) and t = 200 (Ta-
ble 10d). The evaluation is conducted on the LLaVA-Bench
(in-the-wild) [29] benchmark. The benchmark evaluates
models across four categories: overall performance (‘all’),
complex reasoning (‘LLaVA Bench complex’), conversa-
tional tasks (‘LLaVA Bench conversational’), and descrip-
tive tasks (‘LLaVA Bench detail’).

For the ‘detail’ category, CLIP+Diffusion at t = 25
achieves the highest relative score of 56.2, outperform-
ing both CLIP (50.4) and CLIP+DINOv2 (37.7). This
demonstrates that the interleaved diffusion and CLIP fea-
tures effectively capture fine-grained visual details. In the
‘complex’ category, CLIP+Diffusion at t = 200 achieves
the highest relative score of 70.5, surpassing CLIP (68.4).

1



Timestep (t) bottleneck (empty / from CLIP) up ft0 (empty / from CLIP) up ft1 (empty / from CLIP) up ft2 (empty / from CLIP)

0 52.27 / 52.74 48.79 / 49.06 64.09 / 62.826 50.55 / 49.15
25 51.76 / 54.88 50.49 / 51.19 65.07 / 63.69 50.25 / 49.21

100 51.07 / 55.12 49.48 / 51.10 64.15 / 64.98 51.37 / 50.53
200 50.91 / 52.51 49.63 / 49.99 63.88 / 63.13 50.53 / 50.55

Table 6. Top-1 accuracy at different timesteps and layers for fine-grained task (FGVC-Aircraft).

Timestep (t) bottleneck (empty / from CLIP) up ft0 (empty / from CLIP) up ft1 (empty / from CLIP) up ft2 (empty / from CLIP)

0 68.79 / 84.33 66.99 / 79.50 88.28 / 90.11 77.79 / 80.67
25 69.97 / 85.25 73.29 / 84.17 88.61 / 90.68 81.63 / 85.28

100 69.53 / 85.88 67.07 / 81.33 88.29 / 90.97 78.82 / 84.36
200 68.03 / 86.43 65.87 / 81.79 86.89 / 90.32 78.49 / 84.79

Table 7. Top-1 accuracy at different timesteps and layers for fine-grained task (Oxford-IIIT Pet).

Timestep (t) bottleneck (empty / from CLIP) up ft0 (empty / from CLIP) up ft1 (empty / from CLIP) up ft2 (empty / from CLIP)

0 85.83 / 92.13 85.75 / 89.68 86.75 / 88.18 79.11 / 80.28
25 87.59 / 91.32 86.54 / 90.81 87.72 / 91.08 81.07 / 82.69

100 88.28 / 92.41 88.18 / 90.66 87.99 / 92.05 82.02 / 84.73
200 88.36 / 91.65 87.23 / 90.73 89.22 / 92.26 82.69 / 85.63

Table 8. Top-1 accuracy at different timesteps for coarse-grained task (Caltech-101).

Prompt Type
Timestep

25 200

Empty Prompt 88.61 86.89
from CLIP 2.34 ↑ 3.94 ↑

generic 3.14 ↓ 3.13 ↓

Table 9. Performance vs Text Conditioning on Oxford-IIIT Pet using
up ft1: Using a generic prompt (“A photo of a pet”) leads to a dip in
classification performance compared to using an empty prompt. By con-
trast, using a targeted caption (“A photo of a {class name}, a type of
pet”) leads to a boost in performance.

At t = 25, CLIP+Diffusion scores 67.9 indicating that
the coarser-grained features extracted at higher timesteps
(t = 200) seem more effective for this specific task that re-
quires broader contextual understanding. Next, for the ‘con-
versational’ category, CLIP+Diffusion at t = 25 achieves a
relative score of 51.3, outperforming both CLIP (43.9) and
CLIP+DINOv2 (35.6). The interleaving of diffusion and
CLIP features significantly enhances the model’s ability to
handle visually grounded conversational tasks effectively.

Finally, we report the overall performance under the
‘all’ category and note that CLIP+Diffusion achieves a
superior performance with a score of 59.9 at t = 25,
outperforming CLIP’s standalone score of 56.6. This
reinforces the power of the visual representations learnt
from the diffusion process in achieving top-performance on

diverse vision-language tasks.

Additional k-SAE visualizations

DiT vs U-Net: In this section, we provide additional
visualizations of k-SAE features. As shown in Fig. 13
(b), (e), Block 14 of DiT captures more class-specific
information than other blocks which is qualitatively cor-
roborated in Table 2d. However, compared to SD-1.5, DiT
captures less distinct class information, as seen in the snow
background in Fig. 13 (h). Moreover, the spatially related
photographic styles observed in Sec. 4.5 do not emerge
in DiT. We hypothesize that the transformer-based relies
less on inductive bias information compared to UNet-based
SD-1.5, as discussed in Sec. 4.5.

Later timesteps: Figure 14 presents k-SAE visualization
at t = 500 for SD-1.5. Compared to t = 25, features
at t = 500 focus more on low-level information, such as
texture and low-light, which is qualitatively corroborated in
Table 2b. We hypothesize that as the diffusion timestep in-
creases, so does the added noise, rendering the features less
useful for transfer learning, consistent with our observations
in Sec. 4.4.
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Figure 11. PCA Feature Maps SD-1.5 on images from UnRel [40] - Consistency of colors and textures (at up ft1, up ft2) suggests that the model preserves
local details and spatial relationships

Figure 12. PCA Feature Maps DiT on images from UnRel [40] - The blending of colors suggests that the model encodes global relationships while
maintaining a holistic representation of spatial structures, rather than isolating precise local details.
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Category Relative Score GPT-4 Score LLaVA Score

All 56.6 82.7 46.8
LLaVA Bench complex 68.4 80.4 55.0
LLaVA Bench conversational 43.9 87.1 38.2
LLaVA Bench detail 50.4 82.0 41.3

(a) CLIP LLaVA

Category Relative Score GPT-4 Score LLaVA Score

All 47.0 84.8 39.8
LLaVA Bench complex 59.9 81.1 48.6
LLaVA Bench conversational 35.6 94.1 33.5
LLaVA Bench detail 37.7 81.3 30.7

(b) CLIP+DINOv2 LLaVA

Category Relative Score GPT-4 Score LLaVA Score

All 59.9 83.2 49.8
LLaVA Bench complex 67.9 80.0 54.3
LLaVA Bench conversational 51.3 90.6 46.5
LLaVA Bench detail 56.2 80.7 45.3

(c) CLIP+Diffusion (t = 25) LLaVA

Category Relative Score GPT-4 Score LLaVA Score

All 56.8 83.7 47.5
LLaVA Bench complex 70.5 80.0 56.4
LLaVA Bench conversational 45.6 87.7 40.0
LLaVA Bench detail 45.7 86.0 39.3

(d) CLIP+Diffusion (t = 200) LLaVA

Table 10. Performance on the multi-modal reasoning task for various
LLaVA configurations. The integration of Diffusion features with CLIP
improves performance across all tasks, with notable gains in the ‘detail’
and ‘conversational’ categories.

Hyperparameter
Stage

Stage 1 Stage 2

batch size 128 128
learning rate (lr) 2e-3 2e-5
lr schedule decay cosine cosine
lr warmup ratio 0.03 0.03
weight decay 0 0
epoch 1 1
optimizer AdamW [30]
deepspeed stage 2 3

Table 11. Hyperparameters for LLaVA-Lightning (default setting)

DiT Supp 

Block 6 Block 14 Block 22

(a) Sky background (c) Black-specific

(d) Light-color specific (e) Newfoundland

(b) Molosser breeds

(f) Warm-color specific

(g) Black-specific (i) Black and white(h) Snow background

Figure 13. k-SAE visualizations of the blocks on Oxford-IIIT Pet at
t = 25. Block 14 mainly captures class-specific information, while
other blocks focus more on less distinct features.

Pets up1, t=25, SD21

(a) Texture (d) Low-light

up_ft1

Figure 14. k-SAE visualizations on Oxford-IIIT Pet of up ft1 UNet
layer at t = 500. In contrast to the earlier timestep (Fig 3), t = 500
appears to focus more on low-level features.
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